Worksheet for October 10

Problems marked with an asterisk are to be placed in your math diary.

(1.*). Calculate $\int \int_R x^2 + 2xy^2 + 2 \, dA$, where R is the region bounded by the graph of $y = -x^2 + x$, and the lines x = 0 and x = 2.

(2.*) Calculate the volume of the solid region in \mathbb{R}^3 bounded above by the graph of $z = x^2 + y^2$ and the planes x = 0, y = 0, z = 0 and 3x + 4y = 10.

(3) Explain why $\int \int_D dA = \operatorname{area}(A)$. Use this to compute the area of a circle of radius r.

(4.*) Let R denote the region in \mathbb{R}^2 bounded by the graphs of: $x = y^2$, x = 4, y = 0. Set $f(x, y) = y \cos(x^2)$. (i) Graph the region R.

- (ii) Set up $\int \int_R f(x,y) dA$ in two ways, viewing R as a region of Type 1 and Type 2.
- (iii) Evaluate $\int \int_{R} f(x,y) \, dA$. Can you evaluate this in two ways, using your answers from part (ii)?